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Abstract. This paper presents an analysis of  the exact solution for the statistical mechanics 
of the one-dimensional ferromagnetic ANNNI chain under an external magnetic field by 
the transfer matrix method. Expressions in closed farm are derived for the free energy, 
magnetic moment, disorder line, susceptibility and the temperature and field derivatives 
of susceptibility. The variation of  the wavevector and correlation length with the external 
field shows interesting features. 

Among the periodic frustrated king models, the A N N N I  models are the most important, 
and the only member of this family for which the statistical mechanics has been solved 
exactly is the I D  A N N N I  chain (for a review, see [ I ,  21). Surprisingly, there seems to 
be an omission for the non-zero external field case, presumably because of algebraic 
complexity. This paper presents the detailed exact solution for the statistical mechanics 
of the I D  A N N N I  chain under an external magnetic field; the free energy and magnetic 
moment (and hence susceptibility) are determined for arbitrary values of the external 
field by the transfer matrix approach. An expression is determined (again for arbitrary 
values of the external field) for the line across which the decay of two-spin correlation 
changes from monotonous to oscillatory. The wavevector (for the modulated phase) 
and correlation are found to display interesting behaviour as a function of the field. 
Previous works were confined to the case of zero field [3-71, except for studies on the 
ground state [8,9],  a numerical study [ 101 on the antiferromagnetic chain and an 
application of interface method to the ZD case [ l l ] .  

The A N N N I  chain is described by the Hamiltonian 

Z=-X sr ( J ,  s,+ I + J*si+z + H) (1) 

where s, = i1 is the spin at site i and H is the external magnetic field. We shall confine 
ourselves to the ferromagnetic chain by choosing J ,  > 0, J2 < 0. In a straightforward 
manner one can write down the transfer matrix V by the conventional method of 
breaking up the lattice into cells, each containing two consecutive spins [12]: 

+ +  + -  - +  _ _  

(2)  1 ++ Il(XYZ) lIJ(X2) Y J ( x l 2 )  
+- J ( x l z )  ( X l Y )  J ( z l x )  Y 

Y 4 x 2 )  W X Y )  J ( z / x )  
-+ I / J ( X Z )  Y Jb) ( X l Y )  

v =  _ _  [ 
where 

V(%, sj, S I ,  S I )  

= exp[(K,/2)(2sjsk +s,sj + sksr)  + K2(sjsI + sIs,)+ h(s,+s;  + sk + s , ) /2]  (3)  
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x=exp(-2K,), y=exp(-2K2),  z=exp(-Zh), K, = J,/k,T, K,= J,/k,T, h = H/k,T, 
k, = Boltzmann's constant. The characteristic equation for V is quite cumbersome but 
a remarkable simplification is obtained from the important observation that V =  
x- 'y - '  W2,  where 
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This form of transfer matrix has been mentioned previously several times [ 13-15]. The 
matrix W has a rather simple characteristic equation (that also has been mentioned 
earlier [14]): 

det( W - a I )  = a4-2Ca'+ a a 2 + 2 p C a  - p 2 / x 2 = 0  

F=-J , - J , -k ,T  In a ,  ( 6 )  

( 5 )  

and the free energy per spin is given by 

where C =cosh h, a = 1 -x2, p = x2(1 - y 2 )  and a, is the largest root of equation (5). 
We shall now discuss the behaviour of susceptibility and then go over to correlation. 

The magnetic moment per spin is obtained immediately as 

M=-JF/JH=(I /a , ) (da , /dh)=S(a: -P)A (7) 

where S =sinh h and A = [ 2 a : + a a ,  + C ( p  -3a;)I-l. This in turn gives the susceptibil- 
ity ,y (per spin), 

k.TX = -M2+( l /a , ) (d2a , /dh2)  

= -M2+A[C(a : -p )+2MS(3a: -P ) -  M 2 a , ( 6 a ; - 6 a , C  + a ) ]  (8) 

and the field derivative of susceptibility, 

kiT2(dX/dH) ', 

= (l /a,)(d 'a, /dh3)-3MkBTx - M' 

= -3MkBTx - M'+A[(kBT,y+ M2)3a,M(6a1C - 6 ~ ; - a )  

+6a:M' (C  -2a , )+3S(3a : -p) (k ,T~+ M') 

+ 1 8 a : M 2 S + 3 M C ( 3 a : - p ) + S ( a : - p ) l .  (9) 

It can be seen that at zero field, equation (8) reduces to the expression of Stephenson 
[4]. Some typical numerical results are displayed in figure 1. There exists a maximum 
of susceptibility for variation of temperature as well as the field. However, as for the 
zero field case [4], the lines of these maxima are not related in any way to the disorder 
line. 

Before we investigate the correlation, a comment is in order. For H = O  the line 
across which the correlation changes from monotonous to oscillatory coincides with 
the one where the correlation length shows a spike-like minimum, and this line is 
called the disorder line. Although there is no a priori guarantee for this coincidence, 
it also occurs for decorated chains ([2], section 2.2). In the present case of a non-zero 
external field, the former line exists but not the latter (correlation length does not show 
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Figure 1. Plot of susceptibility as a function of field and temperature for -J,JJ,=O.8. 
k.T/J ,=0 .5 ,  0.6, 0.7 for A. B, C respeclively, HJJ,=O, 0.2, 0.3, 0.4 far D, E, F, G 
respectively. 

any sharp minimum), as has also been observed earlier [ 101; still, we propose to call 
the former line a disorder line since this line expresses an important characteristic of 
correlation. This line will perhaps be a disorder line of the ‘third kind’ since disorder 
lines of the first and second kinds have already found entry in the literature [ I ,  21. 

Let us now calculate the correlation. The  two-spin correlation in the thermodynamic 
limit can be easily obtained by working out the standard prescription (see for example 
[ W ) :  

(s,s,+,) = U : ,  +Re[ U l 2 ~ , , ( a 2 / a , ) ’ 1  (10)  

for large r. Here a2 is the second largest root (considering the modulus for complex 
roots if any) of equation (9, U = similarity transform of the matrix [ ( I ,  0, 0, 0) ,  
(0 ,  1,0,0), (O,O,  -1,O), (O,O,  0, -I)] by the matrix that diagonalizes W (to one having 
first and  second diagonal elements as a ,  and a2 respectively). Now, the decay of (s,s,+,) 
with respect to r (at large r )  will change from monotonous to oscillatory when the 
nature of a ,  changes from real to complex. Incidentally, i t  turns out that for the 
parameter range considered below, if a ,  is real, all the four roots are real. Hence, we 
can fortunately locate the disorder line by finding the switchover of the nature of 
eigenvalues from ‘all real’ to ’two real, two complex’. This implies [ 171 that the equation 
for the disorder line is given by A = O  where A is the discriminant of the quartic 
equation (5) :  

A = - ( X 2 / 1 6 ) ( 1 6 X Y ’ -  a 2  Y’+ 1 8 a ’ X Y Z - a ‘ Z + 2 7 a ’ X 2 Z ’ )  = O  ( 1 1 )  
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where X = 1 - y - 2 ,  Y = x 2 y z ( y 2 +  S2)  and Z = x2y4S’. (For H = 0, this equation reduces 
to the previously known form [1-41.) Moreover, for a monotonically decaying correla- 
tion, the correlation length ( is given by 
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(-‘ = In(a,/a2) (12) 

while for an oscillatorily decaying correlation the correlation length and wave vector 
are given by 

t-‘ = ln(a,/lad) q = Arg(a2). (13) 

Thus, the correlation at a large distance can be written as 

(SA+,)- M2+A,,, exp(-r/S) cos(qr) (14) 

where A,,, is the amplitude. For a monotonous correlation q = 0. 
It is interesting to investigate where the disorder line intersects the T=O line. As 

T +  0, x + 0 and y + CO, so that a + 1, X + 1 and Y + 0 and the only feasible solution 
of equation (11) is Z = & . T h i s  inturngives x ~ - J , / J , = x _ + [ l n ( g ) ] / ( 4 l n x ) + x _  as 
T+O with 

x _ = [ l  -(H/2J,)]/2.  ( 1 5 )  

The disorder line for some non-zero values of the applied field is displayed in 
figure 2. As the field incre,ases the line comes down and a larger portion of the x - T 
plane corresponds to an oscillatorily decaying correlation (however, see [ IO] ) .  The 
most interesting feature of this figure is the indication that at an infinitesimally small 
temperature the correlation is oscillatory for x > x - ,  but according to studies [8,9] on 
the ground state the ferromagnetic state extends up to 

x + = [ l  +(H/J,)1/2.  (16) 

In order to understand this contradiction, let us look at the significance of the point 
X +  in the behaviour of correlation length 5. Figure 3 shows the variation of (-‘ with 
temperature, and figure 4 that of (-’ and M with x .  These figures show that at low 

Figure 1. The disorder line for Y B C ~ U U S  values of the external field H. The  IoCaIion of x +  

points for H I ] ,  =0.2,  0.4, 0.6, 0.8 are 0.6. 0.7, 0.8 and 0.9 respectively. 
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0 

Figure 3. Plot of  inverse correlation length <-' 8 s  a function of temperature for vzrious 
values of x with H / J L  =0.4. 

- 1.0 
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-0.5 
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0.2 0.4 0.6 0.8 

Figure 4. Plot o f  magnetization per spin M (broken line) and inverse correla[io)n length 
e-' (full line) as a function o f x  at HIJ,  =0.4 for various temperatures. The change in M 
at x = X +  becomes sharper as  the temperature is lowered. 

temperatures [-' and M remain high (00 and 1 respectively) for x < x +  and vanish for 
x > x + .  Therefore, equation (14) tells us that at a low enough temperature 

for x <xi 

- 0  for x > X +  

(sjsi+,) - M' 

and this is precisely the result of ground state analysis. This reconciles the apparent 
contradiction mentioned above and indicates that there is no sudden change in 
correlation at T = 0 at a fixed H .  
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Figure 5. Constant-q curves (full line) and the disorder line (broken line) in the T - x  
plane far HIJ, =0.4. Dotted regions of the lines are shown for guidance. 

Figure 6. Plot of w a v e v e ~ t o i  q as a function of T and x for H I J ,  ~ 0 . 4 .  Broken lines are 
shown for guidance. 
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The behaviour of the wavevector (for modulated correlation) is displayed in figures 
5 and 6 .  For H = 0, there was a single degenerate ‘singular’ point from which all 
constant-q lines in the x - T plane emerge [ l ,  21. But for H # 0 we find that there are 
two degenerate ‘singular’ points on the T=O line (figure 5 ) ;  one is the x = x -  point 
from which constant-q lines with 0 s 9 < ~ / 3  emerge and the other is the x =xi point 
from which the lines for r r / 3 <  9 s ~ / 2  emerge. The q =  ~ / 3  line cuts the x-axis 
normally at x = (xi+ x _ ) / 2 .  Thus, the q - T curve cuts the T = 0 line at 1113 for 
x -  < x < x+  and at 7112 for x > X +  (figure 6 ) .  

Obviously a dramatic change also occurs in the c-‘ - T curve as the external field 
is switched on; the cusp disappears and the curve (for x < x,)  goes up, instead of 

1.5 
i d  

Figure 7. ( a )  Plot of inverse correlation length 6.’ as B function of temperature far a low 
external field 81 x =0.2.  The curves are nearly coincident for k , T / J , > 0 . 4 .  ( h )  Plot of  
inverse correlation length E - ’  as a function of external field at low temperatures for x = 0.2. 
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coming down as T+O. Now we shall see that although the correlation length is an 
important parameter for the description of correlation, this behaviour of f - '  does not 
imply any non-analyticity in the field dependence of correlation itself (which is of 
course the actual physical quantity involved) at H = 0 at a non-zero temperature. The 
f - '  - T curve at a low H nearly coincides with the curve for H = 0, except at very low 
temperatures (figure 7 ( a ) ) .  The departure is in the form of a rise ( f - ' + m  as T+O) 
and this begins at a temperature that decreases with decreasing field and a t  H = O  this 

of temperature (figure 7 ( b ) )  and a t  T+O, the ( - ' - H  curve is vertical. 
In short, the correlation tends t o  the zero-temperature limit (s,s,+,)+ 1 (for x C X , ) ,  

in two different ways, depending o n  the external field. For H = 0, M = 0 at T # 0, and 
this limit is achieved by a vanishing f - ' .  For H # 0, the limit is approached through 
f - ' + c c  with M being non-zero a t  a low temperature. For x > x +  the limit ( S , S ~ + ~ ) + O  
is dways apprnached thre~gh I-' - 0, whether the external fie!d is present or net. 

We conclude with the remark that it is indeed difficult to derive analytically the 
characteristics of q and f mentioned above. Nevertheless, we have been able to write 
down a fairly simple equation for the partition function and the disorder line (equations 
( 5 )  and ( 1  1)). However, it is difficult to extend the above treatment to further neighbour 
interactions and derive therefrom the effect of the range of interaction on the disorder 
line. This is because, for equations of degree higher than four, one cannot write down 
a closed-form expression for the line where the second-largest root changes its nature 
from real to complex. However, numerical approaches are obviously possible and will 
soon be reported. 

N Bhartacharyya and S Dasgupta 
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